Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli.
نویسندگان
چکیده
Gram-negative bacteria are equipped with quality-control systems for the outer membrane (OM) that sense and cope with defective biogenesis of its components. Accumulation of misfolded outer membrane proteins (OMPs) in Escherichia coli leads to activation of σ(E), an essential alternative σ factor that up-regulates transcription of multiple genes required to preserve OM structure and function. Disruption of bepA (formerly yfgC), a σ(E)-regulated gene encoding a putative periplasmic metalloprotease, sensitizes cells to multiple drugs, suggesting that it may be involved in maintaining OM integrity. However, the specific function of BepA remains unclear. Here, we show that BepA enhances biogenesis of LptD, an essential OMP involved in OM transport and assembly of lipopolysaccharide, by promoting rearrangement of intramolecular disulfide bonds of LptD. In addition, BepA possesses protease activity and is responsible for the degradation of incorrectly folded LptD. In the absence of periplasmic chaperone SurA, BepA also promotes degradation of BamA, the central OMP subunit of the β-barrel assembly machinery (BAM) complex. Interestingly, defective oxidative folding of LptD caused by bepA disruption was partially suppressed by expression of protease-active site mutants of BepA, suggesting that BepA functions independently of its protease activity. We also show that BepA has genetic and physical interaction with components of the BAM complex. These findings raised the possibility that BepA maintains the integrity of OM both by promoting assembly of OMPs and by proteolytically eliminating OMPs when their correct assembly was compromised.
منابع مشابه
Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM
The β-barrel assembly machinery (BAM) is a ∼203 kDa complex of five proteins (BamA-E), which is essential for viability in E. coli. BAM promotes the folding and insertion of β-barrel proteins into the outer membrane via a poorly understood mechanism. Several current models suggest that BAM functions through a 'lateral gating' motion of the β-barrel of BamA. Here we present a cryo-EM structure o...
متن کاملMutational and Topological Analysis of the Escherichia coli BamA Protein
The multi-protein β-barrel assembly machine (BAM) of Escherichia coli is responsible for the folding and insertion of β-barrel containing integral outer membrane proteins (OMPs) into the bacterial outer membrane. An essential component of this complex is the BamA protein, which binds unfolded β-barrel precursors via the five polypeptide transport-associated (POTRA) domains in its N-terminus. Th...
متن کاملCrystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex.
In Gram-negative bacteria, the BAM (β-barrel assembly machinery) complex catalyzes the essential process of assembling outer membrane proteins. The BAM complex in Escherichia coli consists of five proteins: one β-barrel membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Despite their role in outer membrane protein biogenesis, there is currently a lack of functional and s...
متن کاملSequential and spatially restricted interactions of assembly factors with an autotransporter beta domain.
Autotransporters are bacterial virulence factors that consist of an N-terminal extracellular ("passenger") domain and a C-terminal β barrel domain ("β domain") that resides in the outer membrane. Here we used an in vivo site-specific photocrosslinking approach to gain insight into the mechanism by which the β domain is integrated into the outer membrane and the relationship between β domain ass...
متن کاملActivation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate.
The outer membrane (OM) of gram-negative bacteria such as Escherichia coli contains lipoproteins and integral β-barrel proteins (outer-membrane proteins, OMPs) assembled into an asymmetrical lipid bilayer. Insertion of β-barrel proteins into the OM is mediated by a protein complex that contains the OMP BamA and four associated lipoproteins (BamBCDE). The mechanism by which the Bam complex catal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 38 شماره
صفحات -
تاریخ انتشار 2013